Bayesian Theory of Probabilistic Forecasting ViaDeterministic Hydrologic Model
نویسنده
چکیده
Rational decision making (for flood warning, navigation, or reservoir systems) requires that the total uncertainty about a hydrologic predictand (such as river stage, discharge, or runoff volume) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Hydrologic knowledge is typically embodied in a deterministic catchment model. Fundamentals are presented of a Bayesian forecasting system (BFS) for producing a probabilistic forecast of a hydrologic predictand via any deterministic catchment model. The BFS decomposes the total uncertainty into input uncertainty and hydrologic uncertainty, which are quantified independently and then integrated into a predictive (Bayes) distribution. This distribution results from a revision of a prior (climatic) distribution, is well calibrated, and has a nonnegative ex ante economic value. The BFS is compared with Monte Carlo simulation and "ensemble forecasting" technique, none of which can alone produce a probabilistic forecast that meets requirements of rational decision making, but each can serve as a component of the BFS.
منابع مشابه
Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging
Statistical post-processing for multi-model grand ensemble (GE) hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA) to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts wer...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملTreatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
[1] Predictive uncertainty analysis in hydrologic modeling has become an active area of research, the goal being to generate meaningful error bounds on model predictions. State-space filtering methods, such as the ensemble Kalman filter (EnKF), have shown the most flexibility to integrate all sources of uncertainty. However, predictive uncertainty analyses are typically carried out using a sing...
متن کاملSequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering
Accurate streamflow predictions are crucial for mitigating flood damage and addressing operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, we implement two ensemble-based sequential data assimilation methods for streamflow foreca...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کامل